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Abstract Many statistical models in ecology follow the state space paradigm.
For such models, the important step of model validation rarely receives as
much attention as estimation or hypothesis testing, perhaps due to lack of
available algorithms and software. Model validation is often based on a naive
adaptation of Pearson residuals, i.e. the difference between observations and
posterior means, even if this approach is flawed. Here, we consider validation
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of state space models through one-step prediction errors, and discuss princi-
ples and practicalities arising when the model has been fitted with a tool for
estimation in general mixed effects models. Implementing one-step predictions
in the R package Template Model Builder (TMB), we demonstrate that it is
possible to perform model validation with little effort, even if the ecological
model is multivariate, has non-linear dynamics, and whether observations are
continuous or discrete. With both simulated data, and a real data set related
to geolocation of seals, we demonstrate both the potential and the limitations
of the techniques. Our results fill a need for convenient methods for validat-
ing a state space model, or alternatively, rejecting it while indicating useful
directions in which the model could be improved.

Keywords Statistical ecology - time series analysis - state space methods -
maximum likelihood estimation - model validation - residual analysis

1 Introduction

The state space paradigm is of central importance in ecological modelling, as
well as in other fields of science. In the context of time series analysis, state
space methods are predominant in individual movement and behaviour (Pat-
terson et al, 2008; Jonsen et al, 2013) and are gaining popularity in fisheries
assessment models (Nielsen and Berg, 2014) as well as general population dy-
namics (de Valpine and Hastings, 2002; Clark, 2007). A main advantage of
the state space approach is that understanding of ecological dynamics is mir-
rored in the state space structure of the model, while unknown parameters are
estimated with rigorous statistical methods. This coupling of inductive and
deductive modelling permits models with higher fidelity and predictive power
than e.g. purely correlative descriptions, but also requires computational tools
beyond the suite of standard statistical models. An additional appeal of the
state space framework is that it is not limited to time series analysis, but also
pivotal in qualitative and quantitative analysis of dynamic ecosystem mod-
els (Murray, 1989) as well as in dynamic optimisation models in behavioural
ecology (Clark and Mangel, 2000; Thygesen et al, 2016).

The Kalman filter (Kalman, 1960; Harvey, 1989) is the classical technique for
analysing time series using state space models. Originally applicable to lin-
ear systems, which have limited application in ecology, the Extended Kalman
Filter and its many variants (Evensen, 2003; Wan and Van Der Merwe, 2000)
deal with weakly nonlinear dynamics. More recently, Monte Carlo-based meth-
ods have gained popularity for inference in state space models; these include
the particle filter (Liu and Chen, 1998) as well as Markov chain Monte Carlo
methods such as Metropolis-Hastings or Gibbs sampling (Gilks et al, 1996;
Jonsen et al, 2005).
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While Monte Carlo algorithms apply to very general classes of models, they
entail a significant computational burden, even for problems of seemingly mod-
erate complexity (Pedersen et al, 2011; Bolker et al, 2013). Further, it is a non-
trivial task to tune the algorithms and even determine if the runs have reached
convergence. A viable alternative to Monte Carlo entails direct numerical opti-
misation of the likelihood function, using the Laplace approximation (Tierney
and Kadane, 1986) to integrate out unobserved random variables (Skaug and
Fournier, 2006). The appearance of computational tools such INLA (Rue et al,
2009), AD Model Builder (Fournier et al, 2012) and, recently, Template Model
Builder (Kristensen et al, 2016) have been pivotal in this development. These
tools have also been used for inference in ecological state space models, e.g.
(Cadigan et al, 2014; Nielsen and Berg, 2014; Albertsen et al, 2015).

Despite the increasing popularity of state space models of ecological time series,
few studies consider the issue of model validation. Validation is an important
part of the procedure in all areas of statistical modeling: After a model struc-
ture has been conceived and parameters have been estimated, it is crucial to
validate if this model describes the data adequately, assessing if it is plausible
that the data were generated by a system identical to the model. We empha-
size that the ambition is not to prove the model “right”, which would be a
futile exercise, but merely to check that the model cannot be falsified with
the available data. Also, we emphasize that the question is not if the model is
useful for a given purpose, but merely if it agrees with data.

Model validation thereby serves a purpose complementary to hypothesis test-
ing and model selection: While estimation and model selection searches for the
most suitable model within a specified family, and while hypothesis testing ex-
amines if the model structure can be reduced, model validation examines if
the model family should be modified or extended.

Model validation typically relies on inspecting model residuals, which can be
defined in a multitude of ways. In the simplest case of linear regression mod-
els, response residuals are defined as “observed values minus fitted values”
(Anscombe and Tukey, 1963), while Pearson residuals are rescaled to have
unit variance under the model assumptions. The model validation proceeds
by inspecting and testing for patterns in the residuals, such as outliers, corre-
lations with extra covariates, nonlinearities, correlations between the residu-
als, heteroscedasticity, and departure from Gaussianity (Cox and Snell, 1968).
For linear dynamic models of time series (Box and Jenkins, 1970; Harvey,
1989), the fitted values are replaced with one-step predictions, leading to fore-
cast residuals. For nonlinear and non-Gaussian models, the so-called quantile
residuals are computed by evaluating the cumulated distribution function of
the observation in the observed value (Dunn and Smyth, 1996). For time se-
ries, the cumulated distribution function is conditional on past observations
(Smith, 1985), so that the computation of residuals agrees with recursive fil-
tering techniques. These residuals are, under the model assumptions, inde-
pendent and uniformly distributed on [0,1] (Rosenblatt, 1952) but are often
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transformed to the Gaussian scale (Smith, 1985). Observations with discrete
distributions require special attention to ensure that the residuals are con-
tinuously distributed; the typical approach is to add a random perturbation
to the evaluated cumulated distribution function (Smith, 1985). In the pre-
vious, we have assumed that parameters in the model are known, in which
case the quantile residuals are termed theoretical by Dunn and Smyth (1996)
in contrast to observed quantile residuals when they are based on estimated
model parameters. For observed quantile residuals, significance tests require
corrections which take the parameter estimation error into account; asymp-
totic results are given by Kalliovirta (2012). The textbooks by Ljung (1999)
and Madsen (2007) summarize techniques for validating time series models
based on residuals.

The practical applicability of quantile residuals requires computational strate-
gies which remain a hurdle except for linear systems and for Hidden Markov
Models with finite state spaces (Zucchini and MacDonald, 2009). For this rea-
son, attention has been given to systems of specific structures which make
computations feasible. For example, Frithwirth-Schnatter (1996) considered
linear system dynamics with a scalar linear predictor, conditional on which
the observations may have aribtrary non-Gaussian distributions. Due to the
computational complexity and shortage of available implementations, model
validation based on residuals is rarely done outside such limited model classes.

The contribution of the present work is to present an algorithm for computing
forecast quantile residuals in mixed-effect models using the Laplace approxi-
mation. This algorithm has been implemented in the Template Model Builder
framework (TMB?, (Kristensen et al, 2016)). In this framework, which applies
to general non-linear mixed-effects models in which the unobserved random
variables have continuous distributions, the modeller specifies the joint den-
sity of all observed and unobserved random variables in the model. Thereafter,
built-in numerical algorithms integrate out unobserved random variables us-
ing the Laplace approximation, maximise the likelihood function, and thus
provide facilities for statistical inference, i.e. parameter estimates, confidence
regions, test statistics, etc. The contribution of the present work is to pro-
vide algorithms for computation of prediction residuals for general nonlinear
mixed-effects model. The algorithms are implemented in TMB and thus avail-
able to the modeller with minimal coding effort, i.e. if a model has already
been implemented to allow maximum likelihood estimation, prediction residu-
als can now be obtained with a single line of R code in the simplest situations.
We demonstrate the technique with examples involving simulated time series,
both linear and nonlinear, scalar and multivariate, and with continuous and
discrete observations. Finally we demonstrate a case involving geolocation of
seals, i.e., estimation of their position in space based on electronic tags. We

1 TMB is an R package (R Core Team, 2015) available both at the Comprehen-
sive R Archive Network (cran.r-project.org) and in a development version at GitHub
(github.com/kaskr/adcomp)



Validation of ecological state space models using the Laplace approximation 5

discuss advantages and limitations to the approach. The source code for the
simulation examples presented here is available as part of the TMB distribu-
tion; this allows the reader to reproduce the results presented here and modify
the code to apply it to his or her own model.

2 State space models as mixed effect models

We consider discrete-time stochastic state space models with a sequence (Xi,...,Xy)
of states and associated measurements (Yi,...,Yy). We focus on continuous
state spaces, X; € X = R". The observations ¥; are real-valued m-vectors. The
model is specified through:

1. The distribution of the initial state Xj, i.e. the p.d.f. fi(x;8).
2. Transition densities fx(x|x’;0), i.e. the p.d.f. of X;11 at x given X; = x'.
3. Measurement densities fy(y|x;0), i.e. the p.d.f. of ¥; at y given X; = x.

Here, 0 is a vector of model parameters. The observations may be continuously
or discretely distributed, i.e. the p.d.f. fy is w.r.t. a reference measure p which
is either the Lebesgue measure or the counting measure on the integers, while
the states are continuously distributed so that the p.d.f.’s f; and fy are w.r.t.
Lebesgue measure. The densities fxy and fy can be arbitrary, but we do require
that fx(x|x';0) is twice differentiable in (x,x’), and that fy(y|x;0) is twice
differentiable in x.

We assume that the state process {X;:i=1,...,N} has the Markov property
w.r.t. its own filtration and that each measurement Y; is conditionally inde-
pendent of measurements ¥; and states X; at any time point j # i. Thus, the
joint density fyy(%|7;60) of all states and measurements is

N—1 N
fxv(%,5:0) = fi(x)- (H fx(xi+1|x,-;6)> ' <ny(yi|xi;9)> (1)
i=1 i=1

where ¥ = (x1,...,xy) and ¥ = (y1,...,yn). To estimate the parameters 6 from
observed measurements ¥, the states X; are unobserved random variables (a.k.a.
latent variables or random effects), which must be integrated out in order to
obtain the likelihood function:

L(O:5) = [  frs(5.5:0) d¥ @

Our approach is based on the framework in Template Model Builder (TMB)
(Kristensen et al, 2016). Here, the modeller supplies a code which evaluates the
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joint density (1). Then, TMB computes the integral in (2) using the Laplace
approximation (Tierney and Kadane, 1986), applying automatic differentiation
(Rall, 1980; Griewank and Walther, 2008) to obtain the required derivatives.
It is this step that requires that the densities are smooth functions of the
state. The approach allows the likelihood function to be maximized numeri-
cally using standard quasi-Newton methods, where the needed derivatives are
still obtained automatically. This approach seperates model specification from
computational model analysis, which is a convenience to the modeller, and
results in high computational efficiency (Kristensen et al, 2016).

3 A toy example: Random walk with an unmodelled drift

We consider first a simple example to demonstrate the use of prediction resid-
uals in model validation, and in particular the flaw of a naive adaptation of
Pearson residuals. Consider therefore the scalar (n =m = 1) random walk

Xipp=Xi+u+E, i=1,...N-1, (3)

where X; =0, u is a constant drift term, and the E; are Gaussian random
variables distributed as N(0,62). This specifies the transition densities:

o (-1 1)

fX(x|x/;9) = 2 o2

Here, 8 = (u,02,5?) is the vector of system parameters. We measure the states
X; with Gaussian measurement errors W; ~ N (0,s2), obtaining

Yl:Xl+W/l7 lzla,N7 (4)

which specifies the measurement densities

—x 2
fr(ylx: 0) = \/z%exp (_;(ysl‘))

All E; and W; are independent, so that this model is of the general structure
described in section 2.

We simulate states and measurements with N =100, u =0.75, c =1, s=1.
Based on the measurements, we estimate states and parameters 6 = (U, Gz,sz)
using TMB; see figure 1. To recapitulate, TMB uses the Laplace approximation
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to integrate out latent random variables, but in this case the model is linear
and Gaussian so Laplace’s formula involves no approximation error.

We envision a situation where we first conceive a model with no drift, and thus
estimate parameters under the hypothesis Hy : t = 0. We aim to validate or fal-
sify the model M fitted under Hy without comparing to more complex models,
using what is termed pure significance tests by Cox and Hinkley (1974). We
stress that this model validation cannot compare model fit with more complex
alternatives; any realistic modelling study includes a large number of simplify-
ing assumptions, and it is not practical to analyse more complex alternatives
where all these assumptions are relaxed. Thus, we expect that the model M
is falsified during the model validation step, and the alternative hypothesis
Hi : pu # 0 is suggested. Next, we expect that the model M; fitted under the
alternative hypothesis H; actually passes the validation step.

Figure 1 shows the true states {X;}, the measurements {Y;}, as well as posterior
means

% =EM X7} .

Here, on the right hand side, EM means expectation assuming the model M,
and we condition on all data ¥ = (¥1,...,Yy). The figure includes both models
My and M, but at this stage we focus on Mj.

In order to assess model performance, a common practice (Nielsen and Berg,
2014; Cadigan et al, 2014) is to assess model fidelity by inspecting residuals.
Too commonly, these residuals are computed naively as the response residu-
als ¥;, i.e. the difference between observed values and fitted values (posterior
means):

Vi=Y,—X; . (5)

These response residuals ¥; are shown in figure 1 (top right panel) for both
models. It is important to realize that they are unsuitable for model validation:
They do not suggest that the model My should be rejected while M| should be
accepted. For both models, they appear equally unbiased; a correct drift term
is not required to smoothen the observations. Moreover, the grossly incorrect
model My leads to residuals which are smaller in magnitude than those from the
“correct” model M. The explanation for this seeming paradox is that the model
My, not containing a bias term, has an exaggerated estimate of the process
noise 62. It therefore adds too much credibility to the specific measurement
Y;, so that the residual ¥; is too small; effectively overfitting X;. Thus, small
response residuals ¥; is not an indication of good model fit. Furthermore, the
residuals ¥; are not uncorrelated, not even when computed with the correct
model. The fact that response residuals ¥; are unsuitable for model validation
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is well known within time series analysis, but evidently not widely appreciated
by practitioning modellers everywhere.

To avoid this issue, classical methods for linear time series analysis (Box and
Jenkins, 1970; Harvey, 1989; Madsen, 2007) focus on the prediction errors:

Yy =Y; =¥y where ¥ = EM{x;|y{"'} (6)

Here, the subscript i|i — 1 means that we predict the value ¥; based on infor-
mation available at time i — 1, i.e. on Yf’l = (Y1,...,Y;_1). The pivotal role of
prediction errors is obvious when analysing time series with recursive filtering
techniques, but is reduced when viewing this as a general mixed effect model.
Technically, this central role stems from the likelihood function being written
in terms of the prediction errors (Madsen, 2007). From a philosophical stand-
point, one can reasonably argue that a mathematical model is best assesed by
its ability to predict the outcome of future experiments (Ljung, 1999).

Here, we compute prediction residuals using TMB (computational details are
given in the following) and transform them so they would be standard Gaussian
if the true system equals the fitted model. Here, this amounts to computing
Pearson residuals by rescaling with their standard deviation; for a general
nonlinear model this is obtained by the prediction quantile residuals (Smith,
1985)

Zi = &~ (U;) where U; = PM(v; < y;|vi ' =y 1) (7)

and where @ is the standard Gaussian cumulated distribution function. The
terminology in the literature is somewhat inconsistent; we shall refer to these
Z; simply as prediction residuals. They are seen in figure 1. If M was the true
system, these Z; should be independent standard Gaussians (Smith, 1985). The
validation proceeds by finding patterns in the residuals that are unlikely under
this hypothesis. Visual inspection of residuals is not always sufficient, since a
pattern may be obscured by noise; rather patterns are identified from simple
summary statistics of the residuals, measuring bias, trends, correlation, heavy
tails or outliers (Cox and Snell, 1968; Ljung, 1999). The residuals are best first
viewed in isolation, but a complete validation would also include inputs, states
and possible auxiliary time series: Under the true model, no time series which
is independent of the state process {X;} should contain information about the
prediction residuals.

In this example, the simple model M generally under-predicts the next mea-
surement, and the bias in the prediction errors is visually clear (figure 1, lower
left panel, red dots and histogram). Testing if mean is 0 with a t-test, we find
a critical p-value of 8-10~7. This falsifies the model My and suggests the rem-
edy, namely to include a drift term in the process equation, i.e. the alternative
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hypothesis H;. For the model My, this bias is not present; in fact, the mean of
the residuals is exactly 0 due to the bias being estimated. Thus, the model M,
passes this step in the validation.

This example is available in the TMB distribution as randomwalkvalidation.

4 Computation of prediction residuals

When the time series analysis is done using recursive filtering, the prediction
residuals may be obtained as part of the recursion; see for example (Frithwirth-
Schnatter, 1996) for models with linear-Gaussian dynamics and scalar pre-
dictors. Conversely, when using computational methods for general nonlinear
mixed effects models, the residuals require substantial extra computation. We
now describe the computational approach, which we implemented in TMB.
First, we rewrite the residuals U; from (7) as

U — PM(Yi Syiayliil :ylrl) _ f(*""yyi]fi(y) dp(y) (8)
' PM(yi! =ity Jicooyg [i3) d(Y) + [y, 100 fi(¥) de(y)
where
fi0) = | fo®DT101:6) ds (9)

Here, vaYIi is the joint density of all states X = (X1,...,Xy) and observations
up to time i, ¥/ = (¥1,....Y;):

N-1 i
f;zyli(f,yf;e) = fi(x1)- (H fX(xi+laxi§9)> : <HfY()’jaxj;6)> (10)
i1 =1

while [y’fl,y] is the reduced data set where data points yi,...,y;— are kept,
the data point y; is replaced with the integration variable y, and all future
data points y;1,.. v are excluded. These joint densities may be obtained from
the full joint density (1) simply by including the appropriate terms, so from
the modeller’s perspective, the only extra model specification required is the
order in which the data points should be processed.

The next step is to approximate the integral over the states X in (9) using the
Laplace approximation. This involves first maximizing the logarithm of the
integrand (10) w.r.t. ¥ and next determining the curvature at the maximum
point; for both of these operations, automatic differentiation of the logarithm
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of the integrand (10) is employed to yield the required derivatives. Finally, the
line integals over y in (8) are computed by direct numerical integration.

We note that one could conceive several different numerical approaches to the
computation of residuals based on Laplace approximations, and careful con-
sideration to approximation errors must be given so that the patterns in the
residuals can confidently be attributed to model misspecification and not to
artifacts of the numerical methods. Writing the residuals as ratio of integrals,
as opposed to an integral of conditional probabilities, in general has the ad-
vantage that leading error terms in the Laplace approximation cancel (Tierney
and Kadane, 1986), yielding higher accuracy. To compare different candidate
approaches, we performed simulation experiments where data were generated
from simulation models, prediction residuals were computed based on the same
models, and the residuals were tested for patterns. The method described in
this section was superior to all other approaches we implemented. Still, our
approach hinges on the assumed validity of the Laplace approximation. We
will return to this issue in the discussion.

The previous describes the generic method in TMB for computing the resid-
uals for general non-linear models. In the important special case of a fully
Gaussian model, the computations may be greatly simplified. First, the joint
precision matrix of states X and observations ¥ is found from the double deriva-
tives of the logarithm of the joint density (1). Next, the covariance matrix of
observations Y is determined from this joint precision by marginalization, us-
ing standard results for multivariate Gaussian distributions. Next, a Cholesky
factorizaton of this covariance matrix yields the one-step predictors and the
prediction variance, from which the standardized prediction residuals can be
found.

We note that our computational approach to the prediction residuals is based
solely on the joint density fgy(X,7;0), and does not require that the under-
lying model follows the state-space paradigm, i.e. the particular form in (1).
Although this paper focuses on validation of state space models based on time
series data, TMB thus allows automated computation of one-step prediction
residuals for any statistical mixed-effects model in which the joint density is
specified and the data points are ordered, i.e. in the general framework of
prequential statistics (Dawid, 1984).

5 Validation based on a single sample from the posterior

An alternative approach to validation utilises, instead of prediction errors, a
single sample of the unobserved random variables in the model (Waagepetersen,
2006; Gelman et al, 2014). To this end, assume that the data ¥ has been gener-
ated by a model M, and that we generate a single sample of the latent variables
X from the posterior distribution of X given ¥ under M. Then, the pair (X,¥)
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would be jointly generated by the model M; in particular X would be a sample
from the prior distribution. We can now search for patterns in X, or in (X,Y),
that would be unlikely under the model. For a state space model, we can derive
both state transitions and measurement errors from (X,Y), and compare these
with the assumptions in the model.

To illustrate this principle with an example, figure 1 shows the standardised
process errors 6~ 'E;. These are computed as

E =X —X—fi, i=1,..N—1, (11)

where the state vector X = (Xj,...,Xy) is a single random sample from the
conditional distribution of states given observations.

When the sample is generated under My, i.e. with I =0, the process errors
E; feature a distinct bias which, according to My, should not be there. The
hypothesis that the mean is 0 is rejected in a #-test with a critical p-value of
4e-07. This leads to rejecting the model My and suggests the alternative M.
The standardised process errors, generated under M|, have a mean of exactly
zero as was the case for the prediction errors, and the model M| passes this
validation.

Since our computational tool of choice is direct likelihood optimisation and the
Laplace approximation, we draw a sample of X as follows: First, we find the
posterior mode of X given ¥ by maximizing the logarithm of the joint density
(1) w.r.t. x. Next, we find the Hessian using automatic differentiation. Ap-
proximating the posterior distribution of X given ¥ with a Gaussian, we have
now identified the mean and the precision matrix, which allows us to sample
from the distribution. We note that this is done directly from the precision
matrix, i.e. without computing the covariance matrix. For large models, this
avoids a costly matrix inversion and utilizes that the precision matrix is sparse
while the covariance matrix is dense. While this is a simple and fast computa-
tional approach, and accurate for linear Gaussian models as in this example,
approximation errors arise when the model is nonlinear and non-Gaussian.
These errors are difficult to assess in general but can be investigated with a
simulation study. Alternatively, the single sample of X may be drawn using
Markov Chain Monte Carlo.

Although we in this paper focus on computations employing the Laplace ap-
proximation, we comment briefly on the use of Markov chain Monte Carlo.
Here, generating a single sample X from the posterior is straightforward: We
would let the chain run until convergence, stop at an arbitrary time, and let
X be the value of the latent variables at the time of stopping. This simple
approach seems to be underutilised, given the prominence of MCMC methods
in ecological statistics.
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Fig. 1 Results from the toy example. In all panels, cyan colours are used for the “correct”
model M; while red colours are used for the “incorrect” model My. Top left: Time series of
true states, observations, and estimated states. The insert shows a zoom-in. Top right: Naive
residuals as time series and histogram. Bottom left: Standardised prediction residuals from
(7). Bottom right: Normalized sampled process errors from (11).

This technique is also implemented in the example randomwalkvalidation in
the TMB distribution.

6 A multivariate random walk with correlations

To illustrate the multivariate case, consider an n-dimensional random walk

Xiy1=Xi+E;, i=1,....,.N—1 (12)
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Model Px Py
True 09 09

1 Px Py
2 0 0
3 Px 0
4 0 pr

Table 1 Correlations used in the true data generating model and estimation models 1-4.
Model 1 is the correct model, whereas models 2—4 are falsely assuming no correlations among
processes, observations, or both.

where the increments Ej,...,Ey_; are iid and N(0,Xy). We measure the state
Y =Xi+ Wi (13)
with measurement errors Wp,...,Wy that are iid and N(0,Zy), independent

of the states. Here, Xx and Xy are variance-covariance matrices of state in-
crements and measurement errors within a time step. They are specified in
terms of marginal standard deviations 6; = /X, ; and a correlation coeflicient
p using an AR(1) correlation structure:

z=p""oj0; . (14)

These correlations imply that the prediction residuals (5) will be vectors with
correlations between the different elements. Since validation tests rely on in-
dependent and standard Gaussian residuals, one approach is to standardise
and decorrelate the vector residuals by multiplying with a square root of the
inverse variance/covariance matrix. Conversely, the approach in TMB is to as-
sume that measurements are made available to the estimation procedure one
univariate variable at a time, also in the case of vector measurements. Thus,
at each time step i, we perform n data updates, processing one element in the
observation vector Y¥; at a time. The natural default is to let the elements of a
vector measurement be processed in the order they appear in the vector. This
means that no theoretical extension and no coding effort is required to deal
with multivariate measurements. However, this must be kept in mind when in-
specting the residuals for patterns: For example, the residual associated with
Y; ;, i.e. the jth element in the vector Y;, stems from the prediction of ¥; ; based
on Y; for i <ias well as on ¥; ; for j < j.

We simulate a data set from the system with n =4 components and N = 100
time steps. We then estimate 4 models, differing in the correlations included
(table 1): Model family 1 includes the data generating system, while the other
model families lack correlation in state increments and/or measurement errors.
We then compute prediction residuals and search for correlations in them.
Figure 2 shows sample auto-correlation functions (ACF’s) across time-steps
and states for each fitted model. Table 2 shows true and estimated parameters
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True Model 1 Model 2 Model 3 Model 4

Px 0.900 0.877 0.000 0.995 0.000

pr 0.900 0.916 0.000 0.000 0.928

Ox1 0.500 0.480 0.496 2.692 0.329

Oy 0.667 0.492 0.508 2.856 0.330

Ox3 0.833 0.379 0.408 2.894 0.219

Ox 4 1.000 0.454 0.529 2.722 0.321

Oy,1 2.000 2.118 2.106 0.927 2.213

Oy2 2.000 2.151 2.129 0.785 2.274

Oy 3 2.000 2.098 2.082 0.378 2.210

Oy4 2.000 2.065 2.042 0.780 2.165

AIC 1320.385  1845.043  1408.499  1359.413

KS test 0.749 0.018 0.672 0.012
LB test (time) 0.064 0.000 0.000 0.002
LB test (state) 0.704 0.000 0.000 0.084

Table 2 True/estimated parameters, AIC, and p-values from the Kolomogorov-Smirnov
and Ljung-Box tests of the residuals

and the Akaike Information Criterion (AIC; Akaike (1974)) for each model.
The table also show the results of a two-sided Kolmogorov-Smirnov test for
normality of the residuals, and of two Ljung-Box tests (Ljung and Box, 1978)
for autocorrelation — one across time within a component (lags 1-10) and
another across states within time-steps (lags 1-3).

The residuals tests from model 1 pass all tests, as expected since this model
family includes the data generating system. Conversely, all tests from model
2 are rejected, as might be expected since both process- and measurement
errors are wrongly assumed independent in this model. Models 3 and 4 have
less obvious patterns in their residuals, illustrated by the fact that each passes
one of the residual tests. Apparently the dynamics of the true model can be
mimicked quite closely by a model which wrongly assumes independence in
either the process or measurement equation.

In summary, the correct model 1 is validated, the incorrect models 2-4 are
falsified, even if models 3 and 4 are only falsified weakly. Finally, when all four

models are fitted as done here, the correct model would be selected with the
AIC.

This example shows that the approach of one-step predictions is feasible also in
the multivariate case, but also indicates the limitation of the approach: More
than one test of the residuals may be needed to detect model misspecification;
this in turn introduces the difficulties of multiple tests. Although model 4 has
residuals with stastistically significant patterns, as indicated by the tests, the
p-values are not as extreme as one might hope. Finally, although both models
3 and 4 are falsified, the patterns in the residuals do not indicate clearly in
which direction the model should be extended.

This example is available in the TMB distribution as MVRandomWalkValida-
tion.
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Fig. 2 Estimated auto-correlation of prediction residuals for models 1-4 (rows correspond
to models) in the multivariate random walk example.

7 Nonlinear population dynamics with discrete measurements

The following example demonstrates that our framework and implementation
applies also to strongly non-linear ecological models with discrete observations.
We first simulate a state trajectory from the deterministic logistic map N =
RN;(1—N;). We take R=3.7, i.e. the model is in the chaotic regime (May, 1974;
Murray, 1989). We next generate a data set with ¥; being Poisson distributed
with mean S-N; with § = 50 while observations ¥; and Y; are stochastically
independent for i # j; see figure 3 (left panel). Finally we fit to this data a
different model, namely the stochastic Ricker model with Poisson observations:

Xi|X;_1 ~N(X;_1 +r(1—e"1/K),Q), Yi|X; ~ Poisson(Se*?)
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Fig. 3 The nonlinear model. Left panel: Simulated measurements. Right panel: The data
generating deterministic map (dashed line) and the fitted model (thick line indicating me-
dian, grey zone indicating + one standard deviation in log domain.
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Fig. 4 Prediction residuals from the fitted stochastic Ricker map, plotted against the pre-
vious measurement. Included is a fitted parabola, based on assumed constant variance.

Here, the states X; are log-abundances. We assume conditional independence
as in section 2. We estimate these states X; as random effects, in addition to the
fixed effects r, K, and Q. The parameter S, describing the sample size of each
measurement, and the carrying capacity K are statistically confounded, since
they both express the scale of the data. We therefore fix § in the estimation.
Figure 3 (right panel) shows the data generating logistic map as well as the
fitted stochastic model in natural domain.

Based on the fitted model, we compute prediction residuals. Figure 4 shows
these residuals plotted against the previous observation. Note that if the data
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had been generated with the fitted model, these should be independent. Testing
for a non-linear dependency between previous observations and residuals, we
fit a linear model in which the response is the residual Z;;; and covariates are
the previous observation Y; as well as the square of this previous observation,
Yl-z. The predictions from this model is included in the figure. In a likelihood
ratio test for whether the quadratic term can be ommited, we find a p-value
of 6e-07. We conclude that the state transition map in the fitted model does
not adequately describe the data.

Knowing the data generating mechanism, we can explain this pattern in the
residuals. From figure 3, right panel, it is clear that the fitted model over-
predicts the future abundance when the current abundance is low or high,
and correspondingly under-predicts the future abundance when the current
abundance is intermediate. This difference in the models agrees with the bell-
shaped pattern in the residuals in figure 4.

This example is available in the TMB distribution as rickervalidation.

8 Geolocation of seals

We consider the data set on the sub-adult ringed seal analysed by Albertsen
et al (2015). Data available are position measurements obtained from the Argos
satellite system; for brevity we focus on the latitudinal coordinate. Let ¥; be
the observed latitude at time #; here, i € {1,...,N} with N =3,583. The sample
times {t;} are irregularly spaced as they depend on contact between the tag on
the seal and the satellite. Available is also a quality class C;, which may take
one of seven levels, attached to each latitude measurement Y; and indicating
the precision as assessed by the manufacturer. The observations {Y;} are noisy
(figure 5) and the objective of the model is to estimate the positions by filtering
the raw measurements. Following Albertsen et al (2015) we model the position
0, and velocity V; of the seal using the Ornstein-Uhlenbeck process (Dksendal,
2010), i.e. as continuous-time stochastic processes which satisfy the stochastic
differential equation

where the relaxation rate > 0 and the noise intensity ¢ > 0 are parameters
to be estimated. The transition probabilities in the state process X; = (Q;,V;)
are Gaussian with known statistics (Albertsen et al, 2015):

7
E{X;n|X:} = [(1) ( e—ﬁh)/B:| Xi



18 Uffe Hggsbro Thygesen et al.

e (n—2legth L) (e P

2 2
VXl =0 | P (lfjrﬁ”)2 ’ 172£2Bh
2B 3B

We assume that the Argos observations Y; can be written as

Yi:Qli+£i

where & ~ N (07sé,) are normally distributed errors, independent of each other
as well as of the states, and with a variance which depends on the quality class
Ci. The states X;;, the movement parameters 3, 62, and the seven measure-
ment variance parameters s2, are estimated using the R package argosTrack
(Albertsen et al, 2015) which uses TMB for computations. Next, prediction
residuals are computed with TMB. To re-iterate, the estimation of states and
parameters, and the computation of prediction residuals, require only that the
joint density of states {X;. } and observations {¥;} in (1) can be evaluated, after
which integration over the 2N = 7,166 random effects (Q;,,V;) is done auto-
matically by TMB using the Laplace approximation, both when evaluating the
likelihood function (2) and when computing the residuals, i.e. (8).

To investigate for bias in the prediction residuals, the residuals are averaged
over each week (figure 6, left panel) to yield a mean and a confidence interval,
which should include 0. To inspect for homoscedasticity, the figure includes
prediction intervals, i.e. the sample mean of the prediction residuals plus and
minus two times the standard deviation, computed for each week. To inves-
tigate auto-correlation in the residuals, since the times of measurements are
not regularly spaced, we use the semivariogram (Pebesma, 2004) and convert
this to an estimated auto-covariance function (figure 6, right panel). Since
the residuals should be independent, the estimated auto-covariance function
should be fluctuate around 0 with no clear pattern.

The residuals indicate several problems with the model: First, the mean of the
latitude residuals is significantly different from zero in first weeks of the time
series (figure 6, left panel). Although we have not tested for heteroscedasticity,
a visual inspection of the width of the prediction intervals (figure 6, left panel)
suggests that the model performs better at predicting in the middle of the
time series, and particularly bad towards the end. Throughout the data set,
but particularly towards the end, there are a substantial number of outliers.
Finally, the autocovariance of the residuals is significantly different from 0 at
all lags beyond 200 hours.

The patterns in the residuals of time-varying bias and variance, and the out-
liers, imply that the empirical distribution residuals are very far from normally
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Fig. 5 Area overview (A), the full track (B), and close-up of the last part of the track
(C). Grey dots connected with dashed grey line: Observed locations. Black line: Estimated
locations.

distributed, and a Shapiro-Wilks test (Shapiro and Wilk, 1965) rejects nor-
mality with a critical p-value of less than 10~!13. While these issues are enough
to falsify the model, they also suggest the problems with the model that could
be improved in an iterative fashion. As also evident from the map in figure 5,
the motion can be divided into periods of residence and periods of migration.
The patterns in the residuals of time-varying bias and variance, and long-range
correlation, suggest that the current model does not capture both types of be-
haviour. Introducing behavioural switching or slowly time-varying parameters
into the model could perhaps remedy this. Further, the large number of out-
liers suggest that the measurement error distribution should be changed from
a Gaussians to e.g. a t-distribution.

In summary, the prediction residuals indicate several shortcomings of the
model and show us different paths to extend the model in an iterative mod-
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Fig. 6 Left panel: Prediction residuals against time. Outliers out of plotting range are
indicated with tick marks on the bounding box. A bin smoother with weekly bins is added
(red line) with 95% prediction intervals (dashed red line) and 95 % confidence intervals for
the mean (red shaded region). Right panel: The sample auto-correlation of the residuals.
Values above the dashed line are significantly different from 0 at the 95 % level.

elling process. Although this falsifies the model, we note that the model is
still effective in removing noise from the Argos satelite data and providing
confident position estimates by interpolating in the data set. The residuals
suggest, however, that the mechanisms in the model do not capture actual
movements of the seals, so that for example the parameter  should be viewed
as an algorithmic tuning parameter rather than a property of the seal.

9 Discussion

Model validation is a crucial part of statistical modelling; it allows us to either
reject the model for being too simple or wrongly specified, or proceed with
confidence that the model describes the data adequately. The step of model
validation is required to scrutinize the often numerous simplifying assump-
tions made at the onset of the modelling process. While model selection using
e.g. AIC is common in state-space modeling of ecological time series, far fewer
applied studies report results from model validation. We stress that model
selection using AIC and model validation serve complementary purposes and
cannot replace each other. Because model validation does not specify a pre-
cise alternative hypothesis, the tests performed during model validation are
typically not as powerful against specific hypothesis. This was the case in
the multivariate example in section 6, where the AIC with great confidence
identified the correct model, while the residuals from models 3 and 4 were
less able to clearly differentiate between models. Conversely, while AIC and
other model selection techniques allow the modeller to identify the best model
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within a specified family, these techniques do not address the question if this
family of models was chosen sufficiently large, or if the modeler overlooked
some important component that should have been in the model. Furthermore,
the residuals provide information about not just overall model fit, but also
when and how the model fails to predict the next data point. In contrast to
the AIC, this information provides guidance for improving the model in an
iterative process.

If the final model is falsified rather than validated, this casts doubt on the en-
tire statistical analysis. Although a model may be useful even if it is wrong, as
we argued was the case for geolocating seals in section 8, the theoretical basis
for likelihood-based analysis relies on the data generating system belonging to
the specified family. If this is not the case, then maximum likelihood estimates,
their precision, likelihood ratio test statistics, and the AIC can be misleading.
In particular, maximum likelihood estimation effectively tunes parameters in
the model so as to produce the optimal one-step predictions. When the model
family does not contain the data generating system, this tuning is often at the
expense of poorer ability to generate long-term predictions. This is evident
in figure 6, where the residuals are uncorrelated for short time lags but posi-
tively correlated at longer time lags; clearly the model does not capture this
long-term persistence in the velocity of the seal. This tendency of the maxi-
mum likelihood estimator to give emphasis to short-term predictions should
be kept in mind, in particular when using the fitted model to make long-term
predictions.

For state space models of ecological time series, model validation seems to
receive less attention than other steps in the modelling process, except in
special cases such as linear models and Hidden Markov Models with finite
state spaces. In the literature, validation is sometimes based on a naive use of
response residuals such as the difference between observed values and posterior
means, even if there is no justifying basis for this, as illustrated by our example
in section 3. A likely partial cause for this unsatisfying state of the art is lack
of general-purpose algorithms with accompanying software implementations,
which motivated the research described in this paper. With the computational
approach described in this paper, and the implementation in Template Model
Builder, it now requires minimal effort to extend a statistical analysis to also
include computation of prediction residuals. Examples of its use have already
been published (Berg and Nielsen, 2016; Pedersen and Berg, 2016).

The methods and implementation apply to both linear and non-linear ecologi-
cal models, Gaussian and non-Gaussian distributions, and both continuous and
discrete observations, but only to continuous state spaces. As the techniques
derive from the linear-Gaussian paradigm, it is an ongoing debate which tech-
niques and algorithms are applicable to non-linear time series models. Here, we
note that the example of section 7 is clearly non-linear in the sense of dynamic
systems, even chaotic, but at the same time the Laplace approximation yields
reasonable estimates of states and parameters, indicating that the model is



22 Uffe Hpgsbro Thygesen et al.

near linear from the point of view of statistical computations. The explana-
tion for this seeming paradox is that the measurement uncertainty is small
enough that the posterior distributions of the states are restricted to narrow
regions where non-linearities have little effect.

The framework of Laplace approximations provide a unified approach to very
general classes of nonlinear mixed effects models, including state space mod-
els, and is gaining popularity. The Achilles’ heel of the framework remains
the accuracy of the Laplace approximation. Although it is straightforward to
implement models with strong nonlinearities, there is no gaurantee that the
numerical algorithms for maximization converge, and even if they do, there is
no guarantee that the Laplace approximation is sufficiently accurate: In gen-
eral, the posterior distribution of the latent variables X conditional on data ¥
may be multimodal or have heavy tails. The practitioning ecological modeler
may therefore have to choose between model structures which are ecologically
plausible, and those for which computations are known to be feasible and ac-
curate. More research is required to assess the accuracy of the Laplace approx-
imation, and to improve it e.g. by coordinate transformations of state space.
However, we believe that the potential of the framework is large enough that
applications of the principle, such as the current contribution, should proceed
in parallel with efforts to strengthen the fundament. With the current state
of the art, it should be considered best practice to verify the computational
methods by performing the analysis on an articifical data set from the model.
This will make it possible to assess the accuracy of the Laplace approxima-
tion, in addition to illuminating parameter identifiability and other statistical
properties of the model.

Our emphasis has been on validation through one-step predictions, although
mentioning the alternative technique of sampling latent variables once from
the posterior. With TMB and other approaches which are based on the Laplace
approximation, the accuracy of this approximation is a major concern, which
leads us to prefer the one-step predictions. If the posterior distribution of the
states is Gaussian, the single sample from the posterior should be considered.
Also, when the underlying computational engine is Markov Chain Monte Carlo,
the single sample of latent variables may be obtained directly from the Markov
chain. We believe that this technique is underutilised in ecological modelling.

The methods presented here apply not only to state-space models of time se-
ries, but to any statistical model. In a general setting, data points would be
made available to the model one measurement at a time, and the concern is
the ability of the model to predict the next data point. This is the general prin-
ciple of prequential statistics (Dawid, 1984), even if it is most easy to interpret
in the context of time series. Our frame of mixed-effects models is suitable
for a classical, or frequentist, approach to state space models, where system
parameters translate to fixed effects while system states are random effects. In
principle, our computational methods could also be applied to a Bayesian de-
scription of state space models, where also system parameters are unobserved
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random variables. However, the accuracy of the Laplace approximation could
be more doubtful in this case.

We have ignored the issues that arise when we attempt to validate a model
using the same data set that was used to estimate parameters in the model.
This estimation introduces patterns in the residuals which should lead to cor-
rections in the tests performed on the residuals. For example, when applying
the Ljung-Box test (Ljung and Box, 1978) to residuals from a fitted ARMA
model, the test statistic follows a chi-squared distribution, where the num-
ber of estimated parameters are deducted from the degrees of freedom. More
generally, Kalliovirta (2012) gives asymptotic results for how parameter esti-
mation affects test statistics computed from residuals. Alternatively, the error
associated with parameter estimation can be assessed through simulation and
controlled through cross validation.

When inspecting prediction residuals, or other residuals, one scans for a large
number of possible patterns, e.g. bias, drift, skewness, heavy tails, correla-
tion with states or driving inputs, and heteroscedasticity. One should avoid
the dangers of hypothesis fishing and recall that if multiple true hypotheses
are tested, it is likely that some of them are rejected. It is rarely possible to
conceive a list of tests on the residuals before seeing them, which means that
the hypotheses we are testing, implicitly or explicitly, are not proposed inde-
pendently of data. This is not in agreement with the principles of statistics;
this is a well-known problem of post-hoc analysis. For that reason (and several
others, Wasserstein and Lazar (2016)) the ubiquitous significance level of 5 %
should not be used uncritically. Similarly, it is recommendable to follow the
general advice of reserving part of the data for validation, so that a pattern’s
significance is not tested on the same data set which suggested the pattern.

When a model is validated, it does not mean that the model is correct, but
merely that the available data are insufficient to point out differences between
the data generating system and the model. Such differences are ubiquitous: All
models are wrong but some are useful (Box and Draper, 1987). Which model
is selected for subsequent work should depend not only on available data, but
also on the objectives of the analysis. For example, the model in section 8
is useful for removing noise from Argos data and improving the geolocation
of seals, but not useful for predicting actual migrations done by the animals.
Similarly, a stock assessment model may be useful for estimating the current
abundance of a fish stock but inappropriate for long-term predictions of this
stock under climate change. Thus, automated model selection that claims to be
objective should be regarded with some scepticism, as should rigid procedures
for model validation. While final modelling decisions remain the responsibility
of the modeller, informed choice requires availability of diagnostic tools. This
paper provides and demonstrates such tools.
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